Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108257, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37920664

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2023.107887.].

2.
iScience ; 26(10): 107887, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37771660

RESUMO

Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.

3.
Stem Cells ; 41(5): 453-467, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866456

RESUMO

During development, the hypothalamus emerges from the ventral diencephalon and is regionalized into several distinct functional domains. Each domain is characterized by a different combination of transcription factors, including Nkx2.1, Nkx2.2, Pax6, and Rx, which are expressed in the presumptive hypothalamus and its surrounding regions, and play critical roles in defining each area. Here, we recapitulated the molecular networks formed by the gradient of Sonic Hedgehog (Shh) and the aforementioned transcription factors. Using combinatorial experimental systems of directed neural differentiation of mouse embryonic stem (ES) cells, as well as a reporter mouse line and gene overexpression in chick embryos, we deciphered the regulation of transcription factors by different Shh signal intensities. We then used CRISPR/Cas9 mutagenesis to demonstrate the mutual repression between Nkx2.1 and Nkx2.2 in a cell-autonomous manner; however, they induce each other in a non-cell-autonomous manner. Moreover, Rx resides upstream of all these transcription factors and determines the location of the hypothalamic region. Our findings suggest that Shh signaling and its downstream transcription network are required for hypothalamic regionalization and establishment.


Assuntos
Proteínas Hedgehog , Fatores de Transcrição , Animais , Embrião de Galinha , Camundongos , Fatores de Transcrição/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipotálamo , Regulação da Expressão Gênica no Desenvolvimento
4.
Dev Growth Differ ; 64(6): 318-324, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35700309

RESUMO

Understanding the molecular mechanisms leading to retinal development is of great interest for both basic scientific and clinical applications. Several signaling molecules and transcription factors involved in retinal development have been isolated and analyzed; however, determining the direct impact of the loss of a specific molecule is problematic, due to difficulties in identifying the corresponding cellular lineages in different individuals. Here, we conducted genome-wide expression analysis with embryonic stem (ES) cells devoid of the Rx gene, which encodes one of several homeobox transcription factors essential for retinal development. We performed three-dimensional differentiation of wild-type and mutant cells and compared their gene-expression profiles. The mutant tissue failed to differentiate into the retinal lineage and exhibited precocious expression of genes characteristic of neuronal cells. Together, these results suggest that Rx expression is an important biomarker of the retinal lineage and that it helps regulates appropriate differentiation stages.


Assuntos
Proteínas do Olho , Proteínas de Homeodomínio , Neurogênese , Retina , Animais , Linhagem da Célula/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Neurogênese/genética , Retina/citologia , Retina/embriologia , Retina/metabolismo
5.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664634

RESUMO

Retinitis pigmentosa (RP) and macular dystrophy (MD) are characterized by gradual photoreceptor death in the retina and are often associated with genetic mutations, including those in the prominin-1 (Prom1) gene. Prom1-knockout (KO) mice recapitulate key features of these diseases including light-dependent retinal degeneration and constriction of retinal blood vessels. The mechanisms underlying such degeneration have remained unclear, however. We here analysed early events associated with retinal degeneration in Prom1-KO mice. We found that photoreceptor cell death and glial cell activation occur between 2 and 3 weeks after birth. Whereas gene expression was not affected at 2 weeks, the expression of several genes was altered at 3 weeks in the Prom1-KO retina, with the expression of that for endothelin-2 (Edn2) being markedly upregulated. Expression of Edn2 was also induced by light stimulation in Prom1-KO mice reared in the dark. Treatment with endothelin receptor antagonists attenuated photoreceptor cell death, gliosis and retinal vessel stenosis in Prom1-KO mice. Our findings thus reveal early manifestations of retinal degeneration in a model of RP/MD and suggest potential therapeutic agents for these diseases. This article has an associated First Person interview with the first author of the paper.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animais , Expressão Gênica , Camundongos , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
6.
Cells Dev ; 165: 203659, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34024336

RESUMO

Successful outcomes of cell-based therapeutic is highly-dependent on quality and quantity of the cells. Epigenetic modifiers are known to modulate cell fates via reprogramming, hence it is plausible to use them in enhancing the plasticity of mesenchymal stem cells. In this study, we aimed to study the effects of 5-Azacytidine (5-AzaCR), an epigenetic modifier, pretreatment on mesenchymal stem cells-derived from Wharton's Jelly (WJMSCs) fates. WJMSCs were pretreated with 5-AzaCR for 24 h and subsequently cultured in culture media mixtures. The proliferative and stemness characteristics of the pretreated WJMSCs were assessed through morphological and gene expression analyses. Results showed that cells pretreated with 5 µM to 20 µM of 5-AzaCR showed to acquire higher proliferative state transiently when cultured in embryonic-mesenchymal stem cell (ESC-MSC) media, but not in MSC medium alone, and this coincides with significant transitional upregulation of stemness transcription factors. 5-AzaCR pretreatment has potential to confer initial induction of higher state of stemness and proliferation in WJMSCs, influenced by the culture media.


Assuntos
Azacitidina/farmacologia , Células-Tronco Mesenquimais/citologia , Regulação para Cima , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Geleia de Wharton/citologia
7.
Adv Exp Med Biol ; 1077: 41-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357683

RESUMO

Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.


Assuntos
Técnicas de Cultura de Células/tendências , Diferenciação Celular , Hepatócitos/citologia , Células-Tronco Pluripotentes/citologia , Humanos , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...